WS #4-4

Logarithmic Functions

- You will be responsible to read the section completely and review the definitions and application of the following:
 - A. Logarithmic function to the base a
 - B. Domain of Logarithmic Functions
 - C. Properties of Logarithmic Functions $F(x) = \log_a x$
 - 1.
 - 2.
 - 3.
 - 4.
 - 5.
 - 6.
 - D. Natural Logarithmic Functions
 - E. Common Logarithmic Functions
 - F. Logarithmic Equations
- 2. Change to logarithmic form:
 - A. $1.2^3 = m$

 $B. e^b = 9$

 $C. a^4 = 24$

- 3. Change to exponential form:
 - A. $\log_a 4 = 5$

B. $\log_b e = -3$

C. $\log_3 5 = \epsilon$

- 4. Evaluate
 - A. $\log_2 16$

B. $\log_3 \frac{1}{27}$

5. Find the domain of;

$$A. \qquad F(x) = \log_2(x+3)$$

$$F(x) = \log_2(x+3)$$
 B. $G(x) = \log_5\left(\frac{1+x}{1-x}\right)$ C. $h(x) = \log_{\frac{1}{2}}|x|$

$$C. h(x) = \log_{\frac{1}{2}} |x|$$

Give the transformations for: 6.

A.
$$f(x) = \ln x$$
 to $g(x) = -\ln(x+2)$

B.
$$f(x) = \log x$$
 to $g(x) = 3\log(x-1)$

Solving logarithmic equations; 7.

A.
$$\log_3(4x-7)=2$$

B.
$$\log_{x} 64 = 2$$

C.
$$e^{2x} = 5$$

- The concentration of alcohol in a person's blood is measurable. Recent medical research suggests that the risk R (given as a percent) of having an accident while driving a car can be modeled by the equation $R = 6e^{kx}$ where x is the variable concentration of alcohol in the blood and k is a constant.
 - Suppose that a concentration of alcohol in the blood of 0.04 results in a 10% risk (R=10) of an A. accident. Find the constant k in the equation. Graph $R = 6e^{kx}$ using the k value.
 - Using this value of k, what is the risk if the concentration is 0.17? В.
 - Using the same value of k, what concentration of alcohol corresponds to a risk of 100%? C.
 - If the law asserts that anyone with a risk of having an accident of 20% or more should not have D. driving privileges, at what concentration of alcohol in the blood should a driver be arrested and charges with a DUI?